Impact of AI in Personalized Digital Marketing: Boosting Customer Engagement through Tailored Content
DOI:
https://doi.org/10.58966/JCM2024334Keywords:
Digital Marketing, Customer Engagement, Artificial Intelligence, Customization, Machine Learning, Deep Learning, Natural Language Processing.Abstract
The revolution in digital marketing has boomed the development of artificial intelligence in personalizing customized content for every user. This conceptual research highlights the impact of AI in enhancing customer engagement which can be accomplished with tailored content. Marketers gain a deep understanding of individual customer’s needs and preferences by studying the huge data with the help of machine learning, natural language processing and predictive analytics. Businesses use this knowledge to engage with customers personally to boost their involvement, creating strong brand loyalty. This study examines the AI-driven personalisation techniques in different digital marketing disciplines, which also follows the customer engagement benchmark. It also emphasizes the AI’s capacity to transform digital marketing strategies and provide a platform for business to captivate their customers in remarkable ways creating lasting impressions.
References
Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd ed.). Prentice Hall. https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
Stewart Black, J. (2021). Artificial Intelligence (AI): Revolutionizing Digital Marketing. Australasian Marketing Journal. https://doi.org/10.1177/18393349211037684
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/jm.15.0413
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
Chakriswaran, P., Vincent, D. R., Srinivasan, K., Sharma, V., Chang, C., & Reina, D. G. (2018). Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues. Applied
Sciences, 9(24), 5462. https://doi.org/10.3390/app9245462
Tadimarri, A., Jangoan, S., Sharma, K. K., & Gurusamy, A. (n.d.).(2024) AI-powered marketing: Transforming consumer engagement and brand growth. https://doi.org/10.36948/ijfmr.2024.v06i02.14595
Kietzmann, J., Paschen, J., & Treen, E. R. (2018). Artificial Intelligence in Advertising: How Marketers Can Leverage Artificial Intelligence Along the Consumer Journey. Journal of Advertising Research, 58(3), 263-267. https://doi.org/10.2501/JAR-2018-035
Martin, K. D., & Murphy, P. E. (2017). The role of data privacy in marketing. Journal of the Academy of Marketing Science, 45(2), 135-155 https://www.researchgate.net/publication/308578866_The_Role_of_Data_Privacy_in_Marketing
Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT. SCI. 2, 160 (2021). https://doi.org/10.1007/s42979-021-00592-x
Gupta, Y. and Khan, F.M. (2024), "Role of artificial intelligence in customer engagement: a systematic review and future research directions", Journal of Modelling in Management,. https://doi.org/10.1108/JM2-01-2023-0016
Broby, D. (2022). The use of predictive analytics in finance. The Journal of Finance and Data Science, 8, 145-161. https://doi.org/10.1016/j.jfds.2022.05.003
Chen, R., Hua, Q., Chang, Y.-S., Wang, B., Zhang, L., & Kong, X. (2018). A Survey of Collaborative Filtering-Based Recommender Systems: from Traditional Methods to Hybrid Methods Based on Social Networks. t:https://www.researchgate.net/publication/328505487
Rafieian, O. and Yoganarasimhan, H. (2023), "AI and Personalization", Sudhir, K. and Toubia, O. (Ed.) Artificial Intelligence in Marketing (Review of Marketing Research, Vol. 20), Emerald Publishing Limited, Leeds, pp. 77-102. https://doi.org/10.1108/S1548-643520230000020004
Haleem, A. (2022). Artificial intelligence (AI) applications for marketing. ScienceDirect. Retrieved from https://www.sciencedirect.com/science/article/pii
Masnita, Y., Kasuma, J., Zahra, A., & Wilson, N. (2024). Artificial Intelligence in Marketing: Literature Review and Future Research Agenda. Journal of System and Management Sciences, 14(1), 120-140. https://doi.org/10.33168/JSMS.2024.0108
Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002
Liu, L., Ouyang, W., Wang, X. et al. Deep Learning for Generic Object Detection: A Survey. Int J Comput Vis 128, 261–318 (2020). https://doi.org/10.1007/s11263-019-01247-4
Artificial Intelligence and Transforming Digital Marketing. (2024). Studies in systems, decision and control. https://doi.org/10.1007/978-3-031-35828-9
Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2021). Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. Journal of Business Research, 124, 389–404. https://doi.org/10.1016/j.jbusres.2020.10.044
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2019). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
Jarek, K., & Mazurek, G. (2019). Marketing and Artificial Intelligence. Central European Business Review, 8(2), 46–55. https://doi.org/10.18267/j.cebr.213
Chaffey, D., & Ellis-Chadwick, F. (2019). Digital marketing. Pearson uk. https://thuvienso.hoasen.edu.vn/bitstream/handle/123456789/13083/Contents.pdf?sequence=1
Gentsch, P. (2018). AI in Marketing, Sales and Service: How Marketers without a Data Science Degree can use AI, Big Data and Bots. Palgrave Macmillan. https://www.academia.edu/100569531/AI_in_Marketing_Sales_and_Service_by_Peter_gentsch
The Future Of AI-Powered Personalization: The Potential Of Choices
Raji, N. M. A., Olodo, N. H. B., Oke, N. T. T., Addy, N. W. A., Ofodile, N. O. C., & Oyewole, N. a. T. (2024). E-commerce and consumer behavior: A review of AI-powered personalization and market trends. GSC Advanced Research and Reviews, 18(3), 066–077. https://doi.org/10.30574/gscarr.2024.18.3.0090
Reena, M., & Udita, K. (2020). Impact of Personalized Social Media Advertisements on Consumer Purchase Intention. Analele Universităţii “Dunărea De Jos” Din Galaţi. Fascicula I, Economie Şi Informatică Aplicată, 26(2), 15–24. https://doi.org/10.35219/eai15840409101
Chung, T. S., Wedel, M., & Rust, R. T. (2015). Adaptive personalization using social networks. Journal of the Academy of Marketing Science, 44(1), 66–87. https://doi.org/10.1007/s11747-015-0441-x
Okazaki, S., Eisend, M., Plangger, K., De Ruyter, K., & Grewal, D. (2020). Understanding the Strategic Consequences of Customer Privacy Concerns: A Meta-Analytic Review. Journal of Retailing, 96(4), 458-473.
https://doi.org/10.1016/j.jretai.2020.05.007
Özköse, A. (2022). Digital Marketing: Privacy Concerns of Consumers. Retrieved from https://urn.fi/URN:NBN:fi:amk-2022120526514
https://www.qualtrics.com/experience-management/customer/digital-customer-journey/
Haleem, A. (2022). Artificial intelligence (AI) applications for marketing. ScienceDirect. Retrieved from https://www.sciencedirect.com/science/article/pii
Daqar, M. a. A., & Smoudy, A. K. A. (2019). THE ROLE OF ARTIFICIAL INTELLIGENCE ON ENHANCING CUSTOMER EXPERIENCE. International Review of Management and Marketing, 9(4), 22–31. https://doi.org/10.32479/irmm.8166
Pokhrel, S., & Banjade, N. S. R. (2023). AI Content Generation Technology based on Open AI Language Model. Journal of Artificial Intelligence and Copsule Networks, 5(4), 534–548. https://doi.org/10.36548/jaicn.2023.4.006
Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2023). Generative AI for Customizable Learning Experiences. Sustainability, 16(7), 3034. https://doi.org/10.3390/su16073034